EconPapers    
Economics at your fingertips  
 

Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME)

Daniel Jia Sheng Chong, Yi Jing Chan, Senthil Kumar Arumugasamy, Sara Kazemi Yazdi and Jun Wei Lim

Energy, 2023, vol. 266, issue C

Abstract: In recent years, machine learning (ML) techniques have been developed to predict the performance of anaerobic digestion (AD) processes including methane potential and reactor stability. However, their practical applications to industrial-scale palm oil mill effluent (POME) treatment plant are limited. In this study, ML algorithms such as response surface methodology (RSM), adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) are employed to model the biogas production and methane yield from the AD of POME in a local industry-scale anaerobic covered lagoon. Results demonstrated that these models were well aligned with two years of operational data with high coefficient of determination (R2) of up to 0.98. ANFIS yields the highest prediction accuracy, with R2 of 0.9791 along with the lowest mean absolute error (MAE) of 0.0730 and root mean squared error (RMSE) of 0.1438. Subsequently, ANFIS is used in the multi-objective optimisation to maximise the biogas production and methane yield. Optimal conditions for the temperature of the anaerobic digester, pH and recirculation ratio are 38.9 °C, 7.03 and 1.89 respectively which could enhance the biogas production and methane yield by 19.4% and 12.2% respectively. Confirmatory experiments were carried out in the biogas plant under this set of optimised variables for a period of two months. The predicted biogas production and methane yield are highly correlated to the actual data with small percentage difference of 1.25% and 5.09% respectively, indicating that ANFIS model was accurate and reliable. Sensitivity analysis shows that pH has the most dominant effect on the methane yield.

Keywords: Palm oil mill effluent; Biogas; Neural networks; Adaptive neuro-fuzzy inference system (ANFIS); Response surface methodology (RSM) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222033357
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033357

DOI: 10.1016/j.energy.2022.126449

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033357