EconPapers    
Economics at your fingertips  
 

Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating

Moshan Li, Yiyu Lu, Erfeng Hu, Yang Yang, Yishui Tian, Chongyang Dai and Chenhao Li

Energy, 2023, vol. 266, issue C

Abstract: Optimizing secondary reactions using infrared-fast pyrolysis has proved beneficial for investigating the co-pyrolysis behavior. In this study, co-pyrolysis of high-alkali coal (PC) and polyethylene at different temperatures, co-pyrolysis of polyethylene with demineralized coal (DP), and pyrolysis of raw high-alkali coal (RC) and demineralized coal (DC) were conducted in an infrared heating reactor. The results show that the co-pyrolysis promoted the formation of tar and the highest tar yield was 16.16% at 700 °C, and the PC tar yield was higher than that of RC, DC at 500 °C with 7.51% and 5.99% respectively. The tar yields of DP and PC were 7.49% and 11.80%, respectively, and the later had a slightly higher tar yield due to the interaction with AAEM. The addition of PE coupled infrared rapid heating can efficiently reduce the nitrogen and chlorine-containing fractions while increasing the content of long-chain alkanols and linear hydrocarbons. The content of organochlorines decreased from 2.95% at 500 °C to 1.00% at 800 °C. Alkanol and linear hydrocarbons have the highest content in the co-pyrolysis tar, with the total highest content of 61.56% at 600 °C.

Keywords: Infrared heating; Fast co-pyrolysis; High alkali coal; Tar improvement; Polyethylene (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000294
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:266:y:2023:i:c:s0360544223000294

DOI: 10.1016/j.energy.2023.126635

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544223000294