A frame work for comparative wear based failure analysis of CNG and diesel operated engines
Suvendu Mohanty and
Swarup Paul
Energy, 2023, vol. 269, issue C
Abstract:
Application of alternative fuels in engines is essential and encouraged for their non-polluting nature as well as shifting from fossil fuel use. But engine life span should be investigated for better efficiency and economy. In this study, industrial diesel and CNG engines have been investigated periodically for the surface degradation through wear. Ferrographic techniques have been applied on the used lubricating oils for checking the engine wear conditions. Different wear parameters have been obtained by quantitative ferrographic technique. Bath-tub curves have been plotted for the cases based on their severity index. Qualitative ferrographic technique enables to obtain images of the wear particles. Fractal dimensions of the wear particles have been compared for both the cases. The results indicate that CNG engine requires early maintenance and the diesel engine can run more time considering severity index. Some failure parts are physically observed at the end of experimented running hours. The results reveal that the failure of CNG engine happens early and consequently economy loss is more for CNG engine compared to that of diesel engine. Implementation of circular economy concept is suggested for regaining economy from the damaged parts of engine. This comparative analysis is beneficial for better industrial resource utilization.
Keywords: Engine; Fractal; Image; Wear; Severity; Circular economy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223000695
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223000695
DOI: 10.1016/j.energy.2023.126675
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().