EconPapers    
Economics at your fingertips  
 

On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows

Weisheng Chen, Qiujie Xiang, Yaojun Li and Zhuqing Liu

Energy, 2023, vol. 269, issue C

Abstract: Local pressure drop and viscous losses due to the tip-clearance flow are key factors in the performance degradation of axial-flow hydraulic machinery. To deepen insight into the underlying mechanisms of pressure drop and viscous losses in the vicinity of the tip-gap, taking a simplified case, the present work studies the tip-clearance flow around a hydrofoil with/without foil tip-edge fillets using very large eddy simulation. A quantitative model for evaluating viscous losses and pressure drop is developed based on a detailed analysis of the conversion between pressure energy, kinetic energy, and internal energy. Results show that the turbulent loss supplied by turbulent kinetic energy (TKE) production accounts for about 90% of the total viscous losses in the tip-gap region, and TKE production is the major contributor to pressure drop. Contributions of the sub-components of the TKE production term to the TKE production of tip-leakage vortices, and the leading derivatives of the velocity for TKE production, have been explored. Additionally, it is found that the hydrofoil edge fillet promotes (suppresses) the TKE production in the tip-leakage vortex (tip-separation vortex), then enhances (weakens) the pressure drop and viscous losses, while the amount of total loss of the tip-clearance flow is not significantly affected.

Keywords: Hydrofoil; Energy budget; Pressure drop; Viscous loss; Tip-clearance flow; Very large eddy simulation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223001068
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001068

DOI: 10.1016/j.energy.2023.126712

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001068