The effects investigation of data-driven fitting cycle and deep deterministic policy gradient algorithm on energy management strategy of dual-motor electric bus
Kaixuan Zhang,
Jiageng Ruan,
Tongyang Li,
Hanghang Cui and
Changcheng Wu
Energy, 2023, vol. 269, issue C
Abstract:
Nowadays, the trend of powertrain electrification in the public transportation sector is clear. To meet the dramatic load variation and relatively high handling stability requirements for battery electric buses, the dual-motor four-wheel powertrain architecture attracts great attention in recent years. Although the bus routes are fixed, the driving speed and load vary significantly with time, season, passenger capacity, and traffic conditions, which presents a serious challenge for efficient power coupling in a dual-motor system to reduce energy consumption. This study provides a data-driven fitting cycle for the specific bus route. Then, Deep Deterministic Policy Gradient (DDPG) algorithm is introduced in Energy Management Strategy (EMS) design to improve the vehicle's economic performance with uncertain demand in the unknown cycle. The simulation results show that the proposed DDPG-EMS achieves 93.91%–97.66% of the benchmark Dynamic Programming (DP) – based EMS under various testing cycles. In addition, the comparison of DDPG-EMS agent trained by fitting cycle, standard cycle, and real driving data reached 97.2%–97.66%, 93.91%–97.0%, and 94.41%–96.0% of DP, respectively, which demonstrates the effectiveness of data-driven fitting cycle and reinforcement learning algorithm combination in EMS design for dual-motor electrified bus.
Keywords: Electric vehicle; DDPG; Driving cycle; Energy management strategy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223001548
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001548
DOI: 10.1016/j.energy.2023.126760
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().