EconPapers    
Economics at your fingertips  
 

Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study

Mohammed Djaafri, Aicha Drissi, Sabrina Mehdaoui, Slimane Kalloum, M.R. Atelge, Mostefa Khelafi, Kamel Kaidi, Fethya Salem, Ahmed Tahri, A.E. Atabani and Libor Štěpanec

Energy, 2023, vol. 269, issue C

Abstract: The lignocellulosic properties of date palm waste (dry palm) differ significantly from one cultivar to another, which affects the anaerobic digestion (AD) process. This study is believed to be amongst the first to evaluate the influence of date palm cultivars on the biomethane yield in order to offer an annual, continuous and cost-effective biogas production model. In this work, 5 cultivars from date palm waste namely; H'mira (H), Teggaza (Tg), Tinacer (Ti), Aghamou (Ag) and Takarbouchet (Tk) were evaluated for biogas production. All experiments were performed for 45 days with 5 reactors in triplicate under mesophilic conditions (37 °C). The highest methane yield of 231.87 ml of CH4/g of Volatile Solid (VS) was obtained with the Ag cultivars with a difference that varied between 37% and 62% depending on the cultivar type. These results indicate that the date palm cultivars massively influence the biomethane yield, it may give an opportunity for researchers to select the most suitable cultivars for methane production and provide opportunities to valorize other cultivars on other beneficial uses, such as adsorption, thermal insulation, or charcoal production etc.

Keywords: Anaerobic digestion; Recycling; Date palm waste cultivars; Biogas yield; Biomethane (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223001688
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001688

DOI: 10.1016/j.energy.2023.126774

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001688