The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode
Jiageng Ruan,
Changcheng Wu,
Zhaowen Liang,
Kai Liu,
Bin Li,
Weihan Li and
Tongyang Li
Energy, 2023, vol. 269, issue C
Abstract:
Machine learning (ML)-based methods have attracted great attention in the multi-objective optimization problems, which is the key challenge in the energy management strategy (EMS) of the multi-power hybrid system. Our recently published research in this journal verified the effectiveness and feasibility of a Deep Deterministic Policy Gradient (DDPG)-based EMS in the charge-sustaining (CS) stage of a multi-mode plug-in hybrid vehicle (PHEV). However, the application of ML-based-EMS in the charge-depletion (CD) stage and the regenerative braking mode of PHEV are still missing. This study proposes a discrete-continuous hybrid actions-based hierarchical EMS to optimally distribute the dual-motor driving force in battery electric driving and regenerative braking. In the upper layer of EMS, DDPG is trained to learn the torque distribution principles of dual-motor operation to achieve better energy efficiency without losing dynamic performance. Meanwhile, the total recoverable braking torque is also determined by the upper layer EMS considering the braking demand, mechanical and electrical braking system conditions, vehicle safety, and the provisions of law. In the lower level of EMS, the driving mode is determined under the guidance of energy consumption optimization. The verified results show that the proposed EMS outperforms other deep reinforcement learning (DRL)-based hierarchical and non-hierarchical EMSs.
Keywords: DDPG; Discrete-continuous hybrid actions; Regenerative braking; Hierarchical structure (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422300186X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s036054422300186x
DOI: 10.1016/j.energy.2023.126792
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().