Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections
Jijian Lian,
Danjie Ran,
Xiang Yan,
Fang Liu,
Nan Shao,
Xiaoqun Wang and
Xu Yang
Energy, 2023, vol. 269, issue C
Abstract:
Flow-Induced Motion (FIM) of elastically-supported oscillators with "circle-polygon-attachments"sections are experimentally investigated in a water channel to examine the effects of combined sections on hydrokinetic energy harnessing. The incoming flow velocity considered is U = 0.55 – 1.35 m/s, corresponding to reduced velocity Ur = 5.3 –13. A controllable magnetic damping system is applied to change the total damping ratio (ζtotal) of the flow-induced motion energy conversion system (FIMECS) by varying excitation voltages VB (VB = 0 – 108 V, ζtotal = 0.037 – 0.398). Particularly, to calculate fluid force with experimental results, a torque sensor is introduced into FIMECS. The amplitude, frequency, fluid force, active power and efficiency are analyzed. Results suggest that an oscillator with symmetric sharp attachments and no vortex reattachment is conducive to galloping with self-excitation under large damping, and the circle-T-attachments oscillator is optimum. Its best branch for energy conversion is the galloping branch, the peak of active power is Pharn is 19.28 W and the peak of efficiency is ηharn is 26.22% (VB = 99 V, Ur = 11.28). Under the same condition, the circular-T-attachments oscillator has a better energy conversion capacity than the existing ones (triangular prism).
Keywords: Marine hydrokinetic energy; Flow-induced motion; Non-circular cylinders; Fluid force; Efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223002086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002086
DOI: 10.1016/j.energy.2023.126814
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().