EconPapers    
Economics at your fingertips  
 

Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections

Jijian Lian, Danjie Ran, Xiang Yan, Fang Liu, Nan Shao, Xiaoqun Wang and Xu Yang

Energy, 2023, vol. 269, issue C

Abstract: Flow-Induced Motion (FIM) of elastically-supported oscillators with "circle-polygon-attachments"sections are experimentally investigated in a water channel to examine the effects of combined sections on hydrokinetic energy harnessing. The incoming flow velocity considered is U = 0.55 – 1.35 m/s, corresponding to reduced velocity Ur = 5.3 –13. A controllable magnetic damping system is applied to change the total damping ratio (ζtotal) of the flow-induced motion energy conversion system (FIMECS) by varying excitation voltages VB (VB = 0 – 108 V, ζtotal = 0.037 – 0.398). Particularly, to calculate fluid force with experimental results, a torque sensor is introduced into FIMECS. The amplitude, frequency, fluid force, active power and efficiency are analyzed. Results suggest that an oscillator with symmetric sharp attachments and no vortex reattachment is conducive to galloping with self-excitation under large damping, and the circle-T-attachments oscillator is optimum. Its best branch for energy conversion is the galloping branch, the peak of active power is Pharn is 19.28 W and the peak of efficiency is ηharn is 26.22% (VB = 99 V, Ur = 11.28). Under the same condition, the circular-T-attachments oscillator has a better energy conversion capacity than the existing ones (triangular prism).

Keywords: Marine hydrokinetic energy; Flow-induced motion; Non-circular cylinders; Fluid force; Efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223002086
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002086

DOI: 10.1016/j.energy.2023.126814

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002086