Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling
Pengfei Liu,
Ranjith Kandasamy,
Jin Yao Ho,
Teck Neng Wong and
Kok Chuan Toh
Energy, 2023, vol. 269, issue C
Abstract:
Cooling systems in information technology (IT) equipment account for the greatest share of direct energy consumption in data centers. Conventional air-cooling schemes are thermally inefficient and energy intensive as they require large temperature difference between heat source and cooling medium. To overcome the aforementioned drawbacks of air-cooling, a “chillerless” novel spraying architecture which has the capability of performing high heat flux cooling, is highly scalable and easily adaptable by modern data centers is proposed in this paper. To demonstrate the scalability and performance of this new cooling scheme, a full-scale spray cooled rack system which has the capacity of housing up to 12 server units is developed. The dynamic performance of the spray cooled rack system under variable ambient temperature is studied. It is found that the ambient temperature strongly affects the spray cooling performances and the chamber pressure stability. A grey box model of the system is established. The newly developed model has successfully predicted the temperature variation on both the water side and spray cooling side with reasonable accuracy. Our model sets the foundation for predictive control of the chamber pressure and workload management of the spray cooling scheme for application in large-scale data centers.
Keywords: Spray cooled rack; Dynamic study; Thermal modelling; Data center; Energy saving (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223002293
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002293
DOI: 10.1016/j.energy.2023.126835
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().