Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels
C.d Rakopoulos and
D.c Kyritsis
Energy, 2001, vol. 26, issue 7, 705-722
Abstract:
A method for both combustion irreversibility and working medium availability computations in a high-speed, naturally-aspirated, four-stroke, internal combustion engine cylinder is presented. The results of the second-law analysis of engine operation with n-dodecane (n-C12H26) fuel are compared with the results of a similar analysis for cases where a light, gaseous (CH4) and an oxygenated (CH3OH) fuel is used. The rate of entropy production during combustion is analytically calculated as a function of the fuel reaction rate with the combined use of first- and second-law arguments and a chemical equilibrium hypothesis. It is shown theoretically that the decomposition of lighter molecules leads to less entropy generation compared to heavier fuels. This is verified computationally for the particular fuels and the corresponding decrease in combustion irreversibility is calculated. Special reference is made to the effect of the lower mixing entropy of the exhaust gas of an oxygenated fuel (CH3OH) as a contribution to the discussion of the advantages and disadvantages of the use of such fuels.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544201000275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:26:y:2001:i:7:p:705-722
DOI: 10.1016/S0360-5442(01)00027-5
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().