EconPapers    
Economics at your fingertips  
 

Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock

Hongqing Feng, Xinghan Suo, Shuwen Xiao, Xiaofan Chen, Zhisong Zhang, Ning Gao and Zunqing Zheng

Energy, 2023, vol. 271, issue C

Abstract: The improvement in thermal efficiency of GDI engine is severely limited by knocking. The effects of n-butanol combined with intake dilution on engine knock and thermal efficiency were studied in this paper. The results show that the combustion activity of n-butanol containing OH functional group can be improved by blending a small amount, and then the detonation intensity and thermal efficiency can be improved. When a high proportion of n-butanol is mixed, the knock strength and thermal efficiency will be reduced due to the effect of low calorific value and latent heat of vaporization. In particular, the maximum value is reached when 15% n-butanol is employed. The spontaneous combustion tendency is reduced by intake dilution, and the influence degree is reduced in the order of EGR dilution, compound dilution and air dilution, which is caused by the different amount of CO2 in the three dilution gases. When RA = 1.2 and RA-E = 1.2, the knock intensity of GDI engine burning Bu15 is reduced by 96.3% and 98.4%, respectively. Therefore, when n-butanol combined with composite dilution is selected, the occurrence of knocking can be suppressed, while ensuring high thermal efficiency. Current study can provide theoretical guidance for knock suppression of GDI engines.

Keywords: Lean burn; Compound dilution; N-butanol/gasoline blends; Knock; Intake dilution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223003122
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003122

DOI: 10.1016/j.energy.2023.126918

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003122