EconPapers    
Economics at your fingertips  
 

Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers

Xiaoqing Sun, Ce Zhang, Zongwei Han, Jiaxiang Dong, Yiqi Zhang, Mengyi Li, Xiuming Li, Qinghai Wang, Zhenwu Wen and Baoli Zheng

Energy, 2023, vol. 274, issue C

Abstract: Conventional air-conditioners in data centers generally have the problems of high energy consumption and poor cooling effect. In this paper, a composite cooling system with pump-driven heat pipe and vapor compression operation modes is proposed to solve the above problems. The system adopts pump supply liquid technology and rack-level terminals. The cooling effect, energy efficiency, and annual performance of the system are analyzed in this paper. In terms of energy efficiency, the coefficient of performance in vapor compression mode is 6.6–3.8 (outside temperature is 15–35 °C); the coefficient of performance in heat pipe mode is 15.8–9.7 (outside temperature is −15–15 °C). In terms of the cooling effect, the novel system performs well for temperature control accuracy, and the on-demand supply cooling of each rack can be realized. In terms of the annual performance of the typical city, the annual average coefficient of performance of the novel system in vapor compression mode increases by 8.5% compared with the system adopting direct expansion technology. The power usage effectiveness of the data center that adopts the novel cooling system can reach 1.23 which satisfies the current standard.

Keywords: Date center; Pump-driven heat pipe; Rack-level cooling system; Energy saving; Cooling effect (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223007296
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007296

DOI: 10.1016/j.energy.2023.127335

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007296