Data-driven state-of-health estimation for lithium-ion battery based on aging features
Xining Li,
Lingling Ju,
Guangchao Geng and
Quanyuan Jiang
Energy, 2023, vol. 274, issue C
Abstract:
Reliable state-of-health (SOH) estimation is crucial to the safe operation of lithium-ion battery. Data-driven SOH estimation becomes a hot research topic with the booming of high-performance machine learning algorithms. The effectiveness of a data-driven approach will be enhanced significantly if the input features are extracted properly. In order to improve the SOH estimation accuracy, the features highly associated with battery degradation should be utilized in the data-driven model. In this paper, an aging feature extraction method based on electrochemical model (EM) is proposed to account for the battery degradation mechanisms. The aging features of EM such as charge transfer resistance, solid phase diffusion coefficient and electrode volume fraction are defined as internal health features (IHFs) for SOH estimation. Moreover, external health features (EHFs) are directly extracted from the voltage and temperature curves that split into multiple stages. Then, IHFs and multi-stage EHFs are selected appropriately for SOH estimation in offline and online application scenarios. Finally, two well-known machine learning algorithms are employed to construct data-driven SOH estimation model using IHFs and EHFs. Experimental data are used to prove that the proposed method can effectively improve the accuracy of SOH estimation under different application scenarios and battery charge–discharge modes.
Keywords: Lithium-ion battery; SOH estimation; Feature extraction; Aging feature; Machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223007727
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007727
DOI: 10.1016/j.energy.2023.127378
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().