EconPapers    
Economics at your fingertips  
 

Fast prediction of temperature and chemical species distributions in pulverized coal boiler using POD reduced-order modeling for CFD

Xi Chen, Wenqi Zhong and Tianyu Li

Energy, 2023, vol. 276, issue C

Abstract: This study aims to develop a fast prediction method of 3D temperature and chemical species distributions in pulverized coal boilers for real-time combustion monitoring and optimization. Firstly, 585 CFD simulations of a 330 MW tangentially fired pulverized coal boiler were conducted, covering different operating parameter combinations, including coal types, wind scheme, excess air coefficient, boiler load, and et al. Then, the temperature and chemical species data in each cell from the simulations were collected into a snapshot matrix. Next, the proper orthogonal decomposition (POD) method was used to extract the POD modes and POD coefficients from the snapshot matrix so that the temperature and chemical species data among the 585 simulations can be expressed as a weighted sum of the POD modes and the corresponding POD coefficients. Finally, the relationship between the POD coefficients and the related operating parameter combinations was fitted using data-driven methods, which realizes the fast temperature and chemical species distribution prediction under arbitrary operating parameter combinations. The results indicate that the proposed fast prediction method can obtain the boiler's three-dimensional temperature and chemical species distributions within 180.7 s, which is only 1/936 of the time consumption of CFD simulation (169141.2 s). The root relative squared error (RRSE) of the predicted temperature field, O2, CO, CO2, and SO2 distributions are below 2%, 1.79%, 1.61%, 2.11%, and 1.79%, respectively, which shows the great potential of this method for boiler combustion monitoring and digital twin modeling.

Keywords: CFD; Chemical species distribution; Proper orthogonal decomposition (POD); Reduced-order modeling; Support vector machine (SVM); Temperature distribution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010575
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:276:y:2023:i:c:s0360544223010575

DOI: 10.1016/j.energy.2023.127663

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223010575