Cross-conditions capacity estimation of lithium-ion battery with constrained adversarial domain adaptation
Jiabei He and
Lifeng Wu
Energy, 2023, vol. 277, issue C
Abstract:
Accurate estimation of lithium-ion battery capacity is important for battery management systems. Traditional deep learning algorithms assume in advance that the training and test data satisfy independent identical distribution (IID). However, this ideal assumption reduces the generalizability of related methods because the battery operating conditions are often diverse. To address this issue, an unsupervised constrained adversarial domain adaptation method based on causal analysis, attention mechanism and Mogrifier-LSTM (CAM-LSTM-DA) is proposed. First, causal analysis is used to select health indicators (HIs) that are intrinsically associated with capacity degradation, ensuring that the constructed model is valid for the target domain. Then, we adopt Mogrifier-LSTM with key-value pair attention mechanism as the primary network, forcing the learned embedding to have rich degradation information. Finally, to avoid the negative transfer brought by traditional domain adaptation methods, we propose a constrained adversarial domain adaptation method that uses a self-supervised learning module with dynamic temperature and a semantic information constraint module to constrain feature alignment in terms of temporal and semantic information, respectively. The extensive cross-conditions experiments validate the generalizability and prediction performance of the proposed method.
Keywords: Battery management systems; Cross-conditions capacity estimation; Unsupervised domain adaptation; Long short-term memory network; Self-supervised learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223009532
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:277:y:2023:i:c:s0360544223009532
DOI: 10.1016/j.energy.2023.127559
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().