EconPapers    
Economics at your fingertips  
 

Design and experimental testing of a 150 kWh thermal battery using thermosiphons embedded in a concrete matrix for power plant flexible operation

Julio Bravo, Ahmed Abdulridha, Shuoyu Wang, Dominic Matrone, Zheng Yao, Sudhakar Neti, Clay Naito, Spencer Quiel, Muhannad Suleiman and Carlos Romero

Energy, 2023, vol. 277, issue C

Abstract: One of the options for achieving the global temperature limitation of 1.5 °C target, for the mitigation of global warming, is based on the better penetration of renewables into the electrical grid. This has imposed a burden to fossil fuel fired power plants since they are required to operate away from their baseload mode to compensate for the inherent intermittence of the renewable power. Integrating energy storage with fossil plants is an option to achieve their needed flexibility. A cost competitive energy storage option for the solution is based on storing sensible heat in concrete. This paper reports research results and development of a thermal battery cell (TBC) capable of operating at temperatures up to 425 °C. A novel concept consisting of a concrete matrix for sensible heat storage, engineered to provide enhanced thermal and mechanical properties, and twenty-two thermosiphon elements, engineered for dual action were designed and fabricated into a single thermal energy storage (TES) module. Research for the development of the components for the TBC was performed in the laboratory. Efficient heat transfer, to/from the storage media, was demonstrated under several charging and discharging conditions with a thermal storage capacity of 150 kWhth and a rapid discharge, making the TBC suitable for fast ramping when integrated with a fossil fuel fired power plant. Efficient radial heat transfer to the concrete was observed due to the well designed spacing and location of thermosiphons in the radial direction. A minimal temperature difference of 2 °C, between the thermosiphons bottom and top was obtained, demonstrating the isothermicity of those elements. An overall end-to-end TBC energy-to-energy round trip efficiency of 70% was achieved.

Keywords: Thermal energy storage; Sensible energy storage in concrete; Power plants flexibilization; Thermosiphons (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010642
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010642

DOI: 10.1016/j.energy.2023.127670

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010642