Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano-enhanced absorber coating
Emine Yağız Gürbüz,
İstemihan Şahinkesen,
Barış Kusun,
Azim Doğuş Tuncer and
Ali Keçebaş
Energy, 2023, vol. 277, issue C
Abstract:
In the current article, it is intended to improve the performance of an unglazed solar air collector using mesh tubes as extended heat transfer surfaces and nano-enhanced black paint as a thermal conductivity booster of the absorber coating material. In this regard, three types of unglazed solar air collectors have been designed, produced and simultaneously tested containing a conventional (unmodified) system, a system with only mesh tube modification and a system with combined usage of mesh tubes and nano-enhanced absorber coating. It should be stated that Fe3O4 nanoparticles have been utilized within the scope of this work. Integrating nanoparticles to the absorber coating material (industrial matt black paint) averagely improved the thermal conductivity as 0.031 W/mK. The experimental process was tested at fixed air flow rate (0.0115 kg/s) in winter climatic conditions. As result of the experimental analysis, average thermal efficiency values were attained between 45.11 and 63.36%. Combined usage of mesh tubes and nano-enhanced black paint upgraded the mean thermal performance as 40.45% in comparison to the unmodified system. Also, obtained exergetic efficiencies are in the range of 5.49–9.96%. In addition to the energy-exergy analysis, enviro-economic survey was performed within the scope of the current work. Payback periods of the analyzed systems were found between 0.31 and 0.34 years.
Keywords: Unglazed; Solar air collector; Mesh tubes; Nano-enhanced absorber coating; Fe3O4 nanoparticles (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010988
DOI: 10.1016/j.energy.2023.127704
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().