EconPapers    
Economics at your fingertips  
 

Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system

Xingang Qi, Yunan Chen, Jiuyun Zhao, Di Su, Fan Liu, Libo Lu, Hui Jin and Liejin Guo

Energy, 2023, vol. 278, issue PA

Abstract: Conventional black liquor treatment has weaknesses in pollution. Supercritical water gasification (SCWG) technology makes it possible to utilize the energy of black liquor cleanly. In this work, an auto-thermal SCWG black liquor polygeneration system integrated with online salt recovery was proposed. The performance of salt recovery and gasification was evaluated. The results show that the increasing gasification temperature, black liquor concentration, and salt discharge concentration are favorable to hydrogen production and system efficiency. For salt recovery, the sulfur-containing substances in black liquor are all converted into Na2S/NaHS and recovered in this system. Through exergy analysis, the major exergy destructions are caused by the oxidation unit, SCWG unit, and sub-critical heat transfer. Then, the discharge brine heat is utilized to heat oxygen and feed to reduce the exergy destruction of reaction and heat transfer, which improved the energy efficiency from 78.03% to 88.16%, and the exergy efficiency from 60.86% to 64.10%. After adding a discharge salt utilization unit, the system's hydrogen production is 58,438 Nm3/h and the steam supply is 70,455 kW. This work provides theoretical guidance for the design and establishment of a black liquor SCWG industry system.

Keywords: Supercritical water; Black liquor; Hydrogen production; Salt recovery; Exergy analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422301229X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pa:s036054422301229x

DOI: 10.1016/j.energy.2023.127835

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s036054422301229x