Treatment of soybean processing residues for energy recovery and environmental compliance: Technical and economic feasibility
Ana Paula Paulinetti,
Lia Paula Poloni Batista,
Carolina Zampol Lazaro,
Roberta Albanez,
Suzana Maria Ratusznei,
Giovanna Lovato and
José Alberto Domingues Rodrigues
Energy, 2023, vol. 279, issue C
Abstract:
Soybean molasses, a by-product of soy protein concentrate processing, presents environmental disposal issues and therefore researchers and industries have been studying its application. This study investigated methane production from soybean molasses anaerobic digestion at mesophilic conditions in an Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The evaluation was focused on the impact of feeding strategy (batch or fed-batch mode), fill time, applied organic loading rate (OLRA), temperature, and co-processing with okara on system stability and performance. The best performance indicators were obtained at an OLRA of 14.9 kg-COD/m3/d, fed-batch mode with 180 min of feed at 30 °C (86% COD removal, 140.9 mol-CH4/m3/d, 11.0 mol-CH4/kg-COD, and 74% of methane in biogas). Crucial anaerobic digestion functional groups, such as hydrolytic and acetogens, were identified. Firmicutes and Proteobacteria were the most abundant phyla. In the inoculum, Euryarchaeota phylum exceeded Proteobacteria. Nine reactors of 3271 m³ each producing 72 GWh/year of energy would be needed to treat 216 tons-molasses/day according to the scale-up estimation using industrial data. A USD 61 M initial investment would be necessary. The net present value, internal rate of return and payback would be of USD 39 M, 14.0% and 13.8 years, respectively.
Keywords: Anaerobic digestion; Biorefinery; Methane; Sequencing batch reactor; Soybean molasses (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422301455X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:279:y:2023:i:c:s036054422301455x
DOI: 10.1016/j.energy.2023.128061
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().