EconPapers    
Economics at your fingertips  
 

The effects of improper refrigerant charge on the performance of a heat pump with an electronic expansion valve and capillary tube

J.m Choi and Y.c Kim

Energy, 2002, vol. 27, issue 4, 391-404

Abstract: For inverter heat pumps and multi-type heat pumps, conventional expansion devices such as capillary tubes, short tube orifices, and thermostatic expansion valves (TXVs) are being gradually replaced with electronic expansion valves (EEVs) because of the increasing focus on comfort and energy conservation. In this study, the effects of off-design refrigerant charge on the performance of a water-to-water heat pump are investigated by varying refrigerant charge amount from −20% to +20% of full charge in a steady state, cooling mode operation with expansion devices of capillary tube and EEV. The characteristics of the heat pump with an EEV are compared with those with a capillary tube. The capillary tube system is more sensitive to off-design charge as compared with the EEV system. Cooling capacity and COP of the EEV system show little dependence on refrigerant charge, while those are strongly dependent on outdoor conditions. In general, for a wide range of operating conditions the EEV system shows much higher performance as compared with the capillary tube system. The performance of the EEV system can be optimized by adjusting the EEV opening to maintain a constant superheat at all test conditions.

Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544201000937
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:27:y:2002:i:4:p:391-404

DOI: 10.1016/S0360-5442(01)00093-7

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:27:y:2002:i:4:p:391-404