EconPapers    
Economics at your fingertips  
 

Collector efficiency of double-flow solar air heaters with fins attached

H.-M. Yeh, C.-D. Ho and J.-Z. Hou

Energy, 2002, vol. 27, issue 8, 715-727

Abstract: A design for inserting an absorbing plate to divide the air duct into two channels (the upper and the lower) for double-flow operation in solar air heaters with fins attached over and under the absorbing plate has been investigated both experimentally and analytically. The present work is restricted to the case where the outside air is being heated directly, and the configuration investigated here will have lower collector efficiency if the inlet-air temperature is substantially higher than the ambient temperature because of the far greater potential for heat loss from the top. However, the double-flow device introduced here was designed for creating a solar collector with heat-transfer area double between the absorbing plate and heated air. This advantage may compensate for the heat loss from the top when the inlet-air temperature is higher than the ambient temperature. The agreement of the theoretical predictions with those measured values from the experimental results is fairly good. Considerable improvement in collector efficiency of solar air heaters with fins attached is obtained by employing such a double-flow device, instead of using a single-flow example and operating at the same total flow rate. Both the theoretical predictions and experimental results showed that the optimal fraction of airflow rate in upper and lower subchannels is around the value of 0.5. The effect of the flow-rate ratio of the two air streams of flowing over and under the absorbing plate on the enhancement of collector efficiency is also investigated.

Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544202000105
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:27:y:2002:i:8:p:715-727

DOI: 10.1016/S0360-5442(02)00010-5

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:27:y:2002:i:8:p:715-727