EconPapers    
Economics at your fingertips  
 

A multiscale study of the coupling effects of H2S impurity and dissolution reactions on convective mixing in CO2 geological storage

Long Ju and Zhaoli Guo

Energy, 2023, vol. 281, issue C

Abstract: In the present work, a multi-scale study of density-driven flow in CO2 geological storage coupled with H2S impurity and solid–liquid chemical reactions is conducted. Linear stability analysis is first performed to predict the initial interfacial instability at Darcy scale. The nonlinear simulations based on the lattice Boltzmann method (LBM) are further conducted to capture more information of the long term mixing behaviors at pore scale. The results of theoretical analysis and numerical simulations demonstrate that the miscible interface stability and convective mixing processes are determined by the competition among the gravitational instability and the reaction-infiltration instability. As the chemical reaction intensifies, the system gradually becomes dominated by reaction-infiltration instability from gravitational instability. The presence of H2S could suppress the gravitational instability but enhance the infiltration instability, thus, it has completely different effects under slow and fast reaction conditions. This investigation could improve our understand for the coupling effects of CO2 and H2S on the miscible interface stability and density-driven convective mixing process, which is significative for engineering of geological storage of CO2.

Keywords: Sequestration of impure carbon dioxide; Density driven convective mixing; Lattice Boltzmann method; solid-liquid chemical reactions; Linear stability analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016559
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016559

DOI: 10.1016/j.energy.2023.128261

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016559