EconPapers    
Economics at your fingertips  
 

Aspen plus simulation of an inline calciner for white cement production with a fuel mix of petcoke and producer gas

Prateek Sharma, Pratik N. Sheth and Subhadip Sen

Energy, 2023, vol. 282, issue C

Abstract: The white cement industry is facing the challenge of alternative fuel utilization replacing conventional fuel due to the impact of alternative fuel ash on the whiteness of clinker. On the other hand, municipal solid waste (MSW) disposal is a huge waste management problem worldwide. The present article focuses on utilizing MSW-based refuse derived fuel (RDF) as an alternative fuel in white cement. The ash-free producer gas derived via RDF gasification is proposed to overcome the challenge of direct RDF utilization. Aspen plus-based producer gas co-processing model for a calciner has been developed, considering 100% petcoke firing as the baseline scenario. The co-processing of producer gas further augmented the model to achieve a 15–20% thermal substitution rate (TSR). The developed model is validated using the actual plant data. The model results at 15% TSR predicted that the calciner outlet temperature will get reduced by 19 °C, with a 5.3% rise in calciner exit gas volume, which is manageable. CO2 mitigation potential at 15% TSR is estimated to be 11.33% of the baseline scenario. The TSR contribution of producer gas sensible heat at 593 °C is 2.7%, whereas the petcoke enters the system at 60 °C with negligible sensible heat.

Keywords: Calciner; Producer gas; Simulation; Aspen; Thermal substitution rate; White cement (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223022867
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022867

DOI: 10.1016/j.energy.2023.128892

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022867