Fractal characteristics of coal surface structure during low-temperature oxidation and its effect on oxidizability
Jiawen Cai,
Zhaoyang Yu,
Shengqiang Yang,
Jingxia Tang,
Zhenqian Ma,
Xionggang Xie and
Xincheng Hu
Energy, 2023, vol. 284, issue C
Abstract:
Pore structure and surface morphology are the key factors affecting coal spontaneous combustion. However, there are few studies that focus on quantitative descriptions of them. This paper presents an investigation into the evolution of the surface physical structure of different metamorphic coal during low-temperature oxidation. Specific surface area analyzer and atomic force microscopy were used to quantify the physical structure. The results indicate that the average pore size of coal decreases as the temperature increase, with low-metamorphic coal demonstrating a more pronounced reduction. Conversely, the specific surface area exhibits a gradual increase with temperature, particularly for the lignite. The evolution of surface morphology gradually changes from the fluctuation of low temperature to a flat surface with fewer high peaks. Meanwhile, the fractal dimension increasing with temperature also explain that the pore structure and surface morphology tend to become more complex during coal oxidation, especially the lignite. That is, the slopes of the fitting lines of fractal dimension vs temperature are higher for XLT coal than for YL coal and SG coal. The effect of coal surface structure on oxidizability is interpreted by the pore connectivity and oxygen adsorption on the surface during the coal oxygen compound reaction.
Keywords: Coal oxidation; Pore structure; Surface morphology; Fractal dimension (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223019205
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019205
DOI: 10.1016/j.energy.2023.128526
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().