EconPapers    
Economics at your fingertips  
 

Energy, exergy, and economic analyses on coal-fired power plants integrated with the power-to-heat thermal energy storage system

Lin Miao, Ming Liu, Kezhen Zhang, Yongliang Zhao and Junjie Yan

Energy, 2023, vol. 284, issue C

Abstract: To accommodate high penetration of intermittent renewable power, including wind power and photovoltaic power, coal-fired power plants (CFPPs) are forced to enhance operational flexibility. The integration of a power-to-heat thermal energy storage (TES) system within a CFPP is a potential solution. In this study, the power-to-heat TES system was integrated within a CFPP, and the stored heat is released to heat live steam (scheme C1), reheat steam (scheme C), and high-pressure heater feedwater (scheme C3). The thermodynamic and economic performances of power-to-heat TES systems are evaluated and compared. Results show that the power-to-heat process can achieve zero output of CFPPs, but it has an exergy loss coefficient of more than 40%. When the boiler maintains a 75% rated thermal load, schemes C1, C2, and C3 can maximally increase output power by 150.0, 96.5, and 50.0 MW, accounting for 25.0%, 16.1%, and 8.3% of the rated load, respectively. Scheme C2 achieves the highest equivalent round-trip efficiency of 50.81%, which is slightly higher than that of scheme C1 (50.74%). Scheme C1 exhibits the lowest total cost of the equipment and storage materials at 63.68 million USD, and its net present value and payback period are 25.0 million USD and 13.5 years, respectively.

Keywords: Coal-fired power plant; Power-to-heat; Thermal energy storage; Exergy analysis; Economic analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223026300
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026300

DOI: 10.1016/j.energy.2023.129236

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026300