A comprehensive analysis of the minimum energy and thermodynamic efficiency of regenerating aqueous electrolyte solutions in air-conditioning systems
Bo Sun,
Shifang Huang,
Wei Su,
Lin Lu and
Xiaosong Zhang
Energy, 2023, vol. 284, issue C
Abstract:
The regeneration of aqueous electrolyte solutions is a critical and energy-intensive process in air-conditioning systems. In this work, the minimum energy required for regenerating aqueous electrolyte solutions was derived and analyzed from the perspective of the driving force. The thermodynamic efficiency of electrodialysis and thermal regeneration was evaluated and compared. The results show that the minimum energy consumption of the thermally-driven method involving water vapor removal, such as traditional packed-bed thermal regeneration, is lower than that of pressure- and electrically-driven methods that involve liquid water removal, such as electrodialysis and reverse osmosis. Utilizing dry air, such as indoor exhaust and return air, proves to be an effective approach to saving energy during thermal regeneration. For pressure- and electrically-driven regeneration methods, multi-stage processes are necessary to achieve feasibility at high concentrations. However, the complexity and cost of such systems would be considered unacceptable for air-conditioning applications. Instead, single-effect thermal processes can attain high thermodynamic efficiency at high concentrations. The analysis indicates that the thermodynamic efficiency of actual thermal processes studied ranges from 9.1 % to 40.1 %, which is significantly higher than the thermodynamic efficiency of actual electrodialysis processes (which is lower than 4.7 %).
Keywords: Liquid desiccant; Energy consumption; Multi-stage; Second-law efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223027317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027317
DOI: 10.1016/j.energy.2023.129337
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().