A free piston engine generator powered hybrid wheel loader with independent electric drive
Feng Wang,
Zichang Lin,
Jiaqi Li,
Chen Zhang,
Jin Xiao and
Bing Xu
Energy, 2024, vol. 286, issue C
Abstract:
Series hybrid powertrain is a practical way for wheel loader electrification. Conventional internal combustion engine (ICE) technique is mature but the efficiency is limited. Free piston engine generator (FPEG) is regarded as a promising technology that can be applied as decarbonized range extenders attributed to its high thermal efficiency and ultimate fuel flexibility. In this study, a FPEG-based series hybrid powertrain is proposed for wheel loaders to reduce fuel consumption. Multiple FPEG units are parallel connected to power the electric powertrain. The optimal unit commitment of the FPEG set is investigated via dynamic programming. A rule-based strategy called discrete power follower (DPF) is proposed. The influence of FPEG unit number on powertrain performances is studied. Energy efficiency comparison between the FPEG-based and the ICE-based series hybrid powertrains is carried out. Results show that the fuel consumption of the proposed FPEG-based series hybrid powertrain is 10.5 % lower than the ICE-based powertrain. The mean efficiency of wheel loader powertrain improves from 31.7 % to 35.1 %.
Keywords: Free piston engine generator; Unit commitment; Series hybrid wheel loader; Electric hydraulic system; Energy management strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028670
DOI: 10.1016/j.energy.2023.129473
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().