EconPapers    
Economics at your fingertips  
 

The impacts of CO2 mineralization reaction on the physicochemical characteristics of fly ash: A study under different reaction conditions of the water-to-solid ratio and the pressure of CO2

Xu Shao, Botao Qin, Quanlin Shi, Yixuan Yang, Zujie Ma, Yufu Li, Zhe Jiang and Wenjie Jiang

Energy, 2024, vol. 287, issue C

Abstract: Utilizing fly ash (FA) directly to mineralize CO2 and injecting carbon sequestration products into goafs of coal mines is a novel and promising technology. The impact mechanisms of CO2 direct mineralization reactions on the characteristics of key groups, physical phases, surface micromorphology, particle size and pore structure of FA are discussed systematically in detail. The focus is imposed on the impacts of different reaction conditions (water-to-solid ratios and pressures of CO2). Based on the FT-IR, XRD and ESEM-EDS analysis, CO2 is transformed into carbonates of five vibrational models after mineralization and largely sequestered as calcite by portlandite, which forms a passivated layer on the FA surface. The particle size of carbonated FA particles gets smaller and less uniform, and the variation laws of the particle size at full scale are analyzed by particle size intervals. The variation process of the pore can be divided into the dissolution of FA for pore expansion, the low degree of CO2 mineralization reaction for further expanding the pore and the high reaction degree for pore shrinkage. This paper provides theoretical bases for improving the direct CO2 sequestration capacity and research directions for the subsequent application properties of carbon sequestration products.

Keywords: Fly ash; CO2 mineralization reaction; Physicochemical characteristics; Reaction conditions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223030700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030700

DOI: 10.1016/j.energy.2023.129676

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030700