A novel approach to determine optimum switching frequency of a conventional adsorption chiller
K.C.A. Alam,
Y.T. Kang,
B.B. Saha,
A. Akisawa and
T. Kashiwagi
Energy, 2003, vol. 28, issue 10, 1021-1037
Abstract:
This article investigates the effect of design parameters on the switching frequency of a conventional adsorption chiller with silica gel as adsorbent and water as adsorbate. It is well known that as the cycle time lengthens, the coefficient of performance (COP) rises but the cooling capacity lowers. Optimum cycle time is dependendent on the requirements of COP and cooling capacity. A novel simulation technique that introduces a profit function is employed to determine the optimum switching frequency of an adsorption refrigeration system. The results show that optimum switching frequency is very sensitive to the heat exchanger’s design parameters. The design parameters are characterized by the number of transfer unit, NTU, the Biot number of adsorbent bed, Bi, the aspect ratio, AR, the ratio of the heat exchanger thickness to the radius of the fluid channel Hr, the fluid alpha number, αf-a and the inert material alpha number, αm-a. The optimum switching frequency increases with the increase of NTU, Hr and with the decrease of Bi, AR, αm-a and αf-a.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544203000641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:28:y:2003:i:10:p:1021-1037
DOI: 10.1016/S0360-5442(03)00064-1
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().