Carbon exergy tax (CET): its impact on conventional energy system design and its contribution to advanced systems utilisation
A.F. Massardo,
M. Santarelli and
R. Borchiellini
Energy, 2003, vol. 28, issue 7, 607-625
Abstract:
A proposed analytical procedure for a charge on CO2 emissions is used to determine its impact on the design process of different conventional energy systems. The charge on CO2 emissions is defined as a Carbon Exergy Tax (CET). The CET utilises the concept of Efficiency Penalty of the energy system coupled with the Index of CO2Emissions, which connects the amount of the CO2 emitted by the plant with the Second Law efficiency of the plant itself. The aim is to reward the efficient use of energy resources, both from a resource and environmental standpoint, and to penalise plants inefficient in this respect. The CET and the conventional Carbon Tax (CT, based on energy policy considerations and imposed on the mass of emitted CO2) are applied to different conventional energy systems (a gas turbine simple cycle; a regenerative cogeneration gas turbine; a three pressure levels combined cycle) in order to determine their impact on the design of the plants. The effects of the CET and CT are investigated for different scenarios (pressure ratio, fuel cost, etc.). The results are presented using useful representations: the cost of electricity vs. efficiency, the cost of electricity vs. specific work, and the cost of electricity vs. plant design parameters (e.g., pressure ratio). Finally, ways that the use of the CET can contribute to the widespread utilization of advanced energy systems, which are more efficient and less polluting, is discussed. In particular, the CET and CT influence is presented and discussed for a solid oxide fuel cell (SOFC) and gas turbine combined cycle.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544202001792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:28:y:2003:i:7:p:607-625
DOI: 10.1016/S0360-5442(02)00179-2
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().