EconPapers    
Economics at your fingertips  
 

Alleviating distribution shift and mining hidden temporal variations for ultra-short-term wind power forecasting

Haochong Wei, Yan Chen, Miaolin Yu, Guihua Ban, Zhenhua Xiong, Jin Su, Yixin Zhuo and Jiaqiu Hu

Energy, 2024, vol. 290, issue C

Abstract: Randomness and non-stationarity are common challenges in wind power forecasting (WPF). Many studies focus on randomness but usually ignore the non-stationarity which leads to distribution shift and affects prediction accuracy. To address the distribution shift problem, an alleviating distribution shift using the recent difference characterization (Dish-RDC) method is proposed as a general neural paradigm for WPF. Dish-RDC categorizes the distribution shift into intra-space and inter-space shifts. By employing the RDC, the method facilitates the mapping of input sequences to learnable distribution coefficients that better estimate the distribution. Furthermore, real-world time series often exhibit multi-periodicity, yet existing models face limitations in capturing this temporal variation. To address this issue, our research introduces the Temporal 2D-Variation Model (TimesNet) in WPF. This innovative model extends time variation analysis into a 2D space based on multi-periodicity. By using 2D kernels to model these variations, TimesNet can effectively incorporate advanced computer vision techniques into WPF. Combining these approaches, we developed Dish-RDC-TimesNet, a hybrid model. Experiments show it reduced mean absolute error (MAE) by 47.10 % and 20.63 % on two datasets compared to benchmark models. Moreover, integrating Dish-RDC with benchmark models decreased MAE by 39.79 % and 17.85 % on these datasets.

Keywords: Wind power forecasting; Distribution shift; Temporal variations; Deep learning; Multi-periodicity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034710
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034710

DOI: 10.1016/j.energy.2023.130077

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034710