EconPapers    
Economics at your fingertips  
 

Experimental and molecular dynamics studies on the multiscale permeability properties of various gases in salt rock

Lingzhi Xie, Ziran Yuan, Bo He and Runxi Wang

Energy, 2024, vol. 290, issue C

Abstract: To respond to the challenges posed by the intermittent nature of renewable energy sources, salt caverns are considered as ideal storage sites for energy such as hydrogen, compressed air, etc., as well as various other gases such as methane, helium, CO2, etc., due to their unique properties. However, the microfractures of salt rock are characterized by multiscale features and the microscopic flow properties of different gases in them are not yet clear. Here, we combine experiments and molecular dynamics simulations to investigate the multiscale flow of the above gases in salt rocks. First, the permeability of six gases has been evaluated to elucidate the microscopic mechanisms underlying the Klinkenberg effect. Second, based on the adsorption and flow characteristics of the gas, a multiscale permeability curve (ranging from 10−9∼10−3 m) was obtained for the salt rock slit. Furthermore, a fast method for predicting the permeability of salt rock samples was proposed, with predictions in the same order of magnitude as the experimental results. Finally, the storage requirements for different gases in salt caverns were discussed. This work provides multiscale insights into gas storage in salt caverns, which can guide the construction of salt cavern gas storage reservoirs and the assessment of leakage risk.

Keywords: Salt caverns; Gas storage; Multiscale flow; Permeability; Molecular dynamics simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034734
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034734

DOI: 10.1016/j.energy.2023.130079

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034734