EconPapers    
Economics at your fingertips  
 

Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants

Jiangkuan Li, Meng Lin, Bo Wang, Ruifeng Tian, Sichao Tan, Yankai Li and Junjie Chen

Energy, 2024, vol. 290, issue C

Abstract: As an Open Set Recognition (OSR) problem, nuclear power plant fault diagnosis requires not only the correct classification of known faults, but also the effective identification of unknown faults, which cannot be satisfied by most previously developed models. In this study, a novel nuclear power plant OSR fault diagnosis framework based on Convolutional Prototype Learning (CPL) is proposed, in which CPL is used to extract discriminative fault features from raw nuclear power plant data. Besides, two classification methods, One-Class Support Vector Machine (OCSVM) method and Prototype Matching by Distance (PMD) method, are developed to complete the fault diagnosis of open space for the framework. To verify the feasibility and effectiveness of the proposed OSR framework, numerical experiments on 24 OSR tasks with high-dimensional and strong-nonlinear complex nuclear power plant simulation data are conducted, and the OSR performance evaluate by normalized accuracy and Youden's index, feature visualization and convergence rates are analyzed. Results show that compared with adopting traditional Convolutional Neural Network (CNN), the proposed CPL-based framework can significantly boost the OSR diagnostic performance on nuclear power plant fault diagnosis tasks, which benefits from the excellent ability of CPL to extract intra-class compact and inter-class separable feature representation.

Keywords: Open set recognition; Nuclear power plants; Convolutional prototype learning; Unknown fault detection (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034953
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034953

DOI: 10.1016/j.energy.2023.130101

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034953