Modeling district heating pipelines using a hybrid dynamic thermal network approach
Saleh S. Meibodi,
Simon Rees and
Fleur Loveridge
Energy, 2024, vol. 290, issue C
Abstract:
A novel numerical method is presented for fast and accurate simulation of the dynamic thermal behavior of buried pipelines such as those in district heating systems. The model is based on a combination of a conduction response factor method, known as the dynamic thermal network (DTN) method and a one-dimensional discretized heat transfer fluid flow model, the so-called plug flow N-continuously stirred tanks (PFST) model. This combination enables the model to effectively take into account the short timescale dynamic effects of pipelines including longitudinal dispersion of turbulent fluid and its thermal capacity and also transient ground heat transfer. The combined DTN-PFST model is validated by reference to experimental data from both the lab-scale representation of a district heating system and monitoring data from a full-scale operational system. The comparisons between simulation results and experimental data demonstrate a good level of accuracy of the proposed model in predicting the dynamic thermal behavior of pipelines. The model has also been found to be several orders of magnitude more computationally efficient than corresponding 3D numerical models. Both the accuracy and computational efficiency of the proposed model make it well-suited to the design and analysis of district heating distribution networks. The model is also expected to be well-suited to the modeling of horizontal ground heat exchange pipe systems.
Keywords: Dynamic thermal network; District heating; Buried pipes; Thermal response simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223035016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035016
DOI: 10.1016/j.energy.2023.130107
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().