A hybrid on-line approach for predicting the energy consumption of electric buses based on vehicle dynamics and system identification
Yingjiu Pan,
Wenpeng Fang,
Zhenzhen Ge,
Cheng Li,
Caifeng Wang and
Baochang Guo
Energy, 2024, vol. 290, issue C
Abstract:
Energy consumption modeling for electric vehicles is conducive to achieving eco-driving optimization and alleviating driver ‘range anxiety’. However, it remains challenging due to the complexity of influencing factors. In this study, we propose a novel hybrid cumulative energy consumption (CEC) prediction approach by a combination of vehicle dynamics and the forgetting factor recursive least squares (FFRLS) to achieve real-time online forecasting accurately. The approach is developed with real-world data collected from over 983,000 frames across six electric buses in Guangzhou, China. To enhance the accuracy and practical application of the approach, we divide the data into segments as a unit of calculation for CEC. Subsequently, we constructed the model in three working conditions based on the vehicle longitudinal dynamics, and determined the parameters to be estimated for the model. With the help of the online learning capabilities of FFRLS algorithm, the estimated parameters can be constantly adjusted and updated according to the state of the buses. The results demonstrate that the mean absolute percentage error (MAPE) of the proposed method is 7.05 %. This performance surpasses that of existing relevant studies, indicating that the model provides a more accurate method for eco-driving and city-scale electric bus operation systems.
Keywords: Energy consumption; Electric buses; On-line prediction; Vehicle dynamics; Forgetting factor recursive least squares (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223035995
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035995
DOI: 10.1016/j.energy.2023.130205
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().