EconPapers    
Economics at your fingertips  
 

Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments

Ningtao Zhang, Shuxia Li, Litao Chen, Yang Guo and Lu Liu

Energy, 2024, vol. 290, issue C

Abstract: The characteristics of gas-liquid two-phase flow in hydrate-bearing sediments (HBS) are critical for natural gas hydrate production. This study experimentally investigates the flow patterns in the presence of hydrates and employs the phase field method for accurate simulations. Additionally, flow pressure differences in a capillary model were analyzed, and the impacts of occurrence patterns, saturation, and wettability of hydrates were investigated by numerical simulation. The results show that flow patterns are predominantly influenced by flow velocity. At high flow rates (Reynolds number >10), different gas-liquid ratios result in a variety of flow patterns, including annular, Taylor, and bubble flow. However, at lower flow rates (Reynolds number <10), the flow pattern consistently manifests as Taylor flow, regardless of gas-liquid ratio variations. Notably, the Jamin effect (a significant pressure differential caused by hydrates within the flow) was observed, which intensifies with increasing hydrate saturation and decreasing contact angle. Pore-filling hydrate patterns, in contrast to grain-coating, exhibit a greater number of gas-liquid interfaces, leading to larger pressure differences and a more evident Jamin effect. These findings aid in understanding the fluid migration in HBS and help estimate the natural gas production capacity.

Keywords: Methane hydrate; Gas-liquid flow; Flow characteristics; Phase field method; Jamin effect (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223036095
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036095

DOI: 10.1016/j.energy.2023.130215

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036095