EconPapers    
Economics at your fingertips  
 

High-efficiency recovery of methane from coal bed gas via hydrate formation in emulsions

Liang Mu, Ziqi Zhou, Huixing Zhao, Xiaohai Zhu and Qingyan Cui

Energy, 2024, vol. 290, issue C

Abstract: Although the hydrate-based coal bed gas (CBG) separations have been investigated, the obtained CH4 recovery ratios were not quite satisfactory. To further improve CH4 extraction, this study developed a high-efficiency CBG recovery method via hydrate formation in emulsions facilitated by an excellent anti-agglomerant. Thermodynamic promoters were introduced to lower operating pressure and the hydrate equilibrium conditions were determined. Then the effect of water-cut (40–100 vol%), initial pressure, experimental temperature, stirring rate and feed gas composition was investigated. The CH4 concentration in equilibrium gas first decreased then increased as the water-cut increased. Specifically, it decreased from 30.16 mol% to 8.23 mol% in the 60 vol% water-cut emulsions and CH4 recovery reached 88.02 % at 274.15 K and an initial pressure of 3.0 MPa, marking the highest CH4 recovery achieved in CBG separation thus far. The CH4 recovery was increased at low temperature while decreased at high pressure conditions. After a second-stage separation, the CH4 concentration in equilibrium gas decreased to 1.64 mol% from 30.16 mol%, signifying a remarkable 94.56 % recovery of CH4 from feed gas. The CH4 contents after a three-stage enrichment exceeded 87 mol%. This study furnishes valuable insights for CH4 recovery from CBG utilizing hydrate-based separation technology.

Keywords: Coal bed gas; Separation; Hydrate; Methane recovery; Emulsion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224000124
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000124

DOI: 10.1016/j.energy.2024.130241

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000124