EconPapers    
Economics at your fingertips  
 

Study on the operational feasibility domain of combined heat and power generation system based on compressed carbon dioxide energy storage

Jiahao Hao, Pingyang Zheng, Yanan Li, Zhentao Zhang, Jiajun Zhang, Junling Yang, Yunkai Yue and Xiaoqiong Li

Energy, 2024, vol. 291, issue C

Abstract: Compressed carbon dioxide energy storage (CCES), as one of the compressed gas energy storage (CGES) technologies, can make the system capable of combined heat and power supply by storing and releasing electrical energy in the form of heat and potential energy, which is of positive significance for realizing efficient and comprehensive energy utilization and promoting the development of energy storage technology. A combined heat and power supply system based on compressed carbon dioxide energy storage (CCES-CHP) and its mathematical model are constructed. In order to construct a visualized operational feasibility domain, the dimensionless factors γ1 and γ2 and the ratio parameters α1 and α2 are defined to reflect the coupling relationship between the system storage/release energy power, mass flow rate and cooling/heat release power. A dual state of charge (SOC) model of heat and gas storage is also constructed. Further research is conducted on the shape and characteristics of the operational feasibility domain under the combined heat and power mode. The change of the ratio of themoelectric distribution ratio dispatch and wide operating conditions are analyzed. Thus provide an idea for evaluating the flexibility of the system operation combined heat and power capacity and response tracking. Finally, the analysis process and application potential of the proposed operational feasibility domain analysis method were validated for a typical integrated energy system.

Keywords: Compressed carbon dioxide energy storage; Combined heat and power supply; Operational feasibility domain; Thermoelectric coupling; Analysis of variable operating condition (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223035168
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:291:y:2024:i:c:s0360544223035168

DOI: 10.1016/j.energy.2023.130122

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544223035168