Study on the influence principle and application law of intake wall thickness on uniflow scavenging opposed-piston engine
Wenxiao Wang,
Yongsen Liang,
Zhengxing Zuo,
Boru Jia and
Wei Wang
Energy, 2024, vol. 291, issue C
Abstract:
Energy efficient utilization is an important research direction of energy conversion systems. Uniflow scavenging opposed-piston engine has the potential to achieve higher thermal efficiency than classic engines. The lack of valve mechanism leads to the poor scavenging performance of uniflow scavenging opposed-piston engines. Many studies have been conducted to improve scavenging performance by optimizing intake structure. However, the critical influence of intake wall thickness has not been considered. Therefore, a three-dimensional simulation model of intake wall thickness was established and validated. Then the detailed influence of intake wall thickness was explored. Last, the influence law of intake wall thickness under different application conditions is explored. According to the simulated results, intake wall thickness significantly affects the scavenging process by influencing exhaust gas backflow and changing the scavenging passage; the vital influence of intake wall thickness should be considered in optimizing other intake structures. Thicker intake wall thickness increases the backflow resistance and retains more exhaust gas backflow in the intake port, which is conducive to orderly cleaning backflow exhaust gas. The thinner intake wall thickness should be selected at small intake pressure, and the thicker intake wall thickness should be selected at large intake pressure.
Keywords: Intake wall thickness; Uniflow scavenging; Opposed piston; Exhaust gas backflow; Flow process; Combustion performance (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224000422
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:291:y:2024:i:c:s0360544224000422
DOI: 10.1016/j.energy.2024.130271
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().