EconPapers    
Economics at your fingertips  
 

Optimizing design of catalyst layer structure with carbon-supported platinum weight ratio mixing method for proton exchange membrane fuel cells

Junghyun Park, Obeen Kwon, Hyoun-Myoung Oh, Seokhun Jeong, Yoonho So, Gyutae Park, Hojae Jang, Seonghyeon Yang, Jiwon Baek, Gyuhyeon Kim and Taehyun Park

Energy, 2024, vol. 291, issue C

Abstract: The design of catalyst structure of proton exchange membrane fuel cells (PEMFCs) functions a crucial role in water and reactants transport. In this work, catalyst layer is designed to mixing strategy of commercial Pt/C catalysts with various weight ratios (20 wt%, 40 wt%, and 20 + 40 wt%). Our mixing strategy demonstrates beneficial effects for optimized catalyst structure, leading to improved electrochemical performance and durability. Mix weight ratio Pt/C (as we abbreviated 20 + 40 wt% to Mix wt%) confirmed the optimized morphology through physical characterization and verified through electrochemical characterization under varying relative humidity (RH) conditions. Remarkably, Mix wt% Pt/C showed the highest electrochemical performance at 40–120 % RH, with a maximum power density elevation of ∼42 % and charge transfer resistance improvement of ∼40 % under low humidity conditions. This enhancement can be attributed to the improved mass transport resulting from increased pore size and reduced distortion in transport pathways. Additionally, we performed a 5,000 cycle accelerated stress test (AST), demonstrating enhanced durability in Mix wt% Pt/C. Our strategy provides a reproducible and simplified process to achieve higher fuel efficiency. Moreover, we anticipate that this offers the potential to enhance both performance and durability in commercial PEMFC applications.

Keywords: Proton exchange membrane fuel cells; Pt/C weight ratio; Oxygen transport; Water management; Durability of catalyst (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224001348
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:291:y:2024:i:c:s0360544224001348

DOI: 10.1016/j.energy.2024.130363

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544224001348