EconPapers    
Economics at your fingertips  
 

Uncertainty-aware deep learning for reliable health monitoring in safety-critical energy systems

Yuantao Yao, Te Han, Jie Yu and Min Xie

Energy, 2024, vol. 291, issue C

Abstract: In recent years, significant advancements in deep learning technology have facilitated the development of intelligent health monitoring approaches for energy systems. However, when dealing with safety-critical energy systems, such as nuclear energy systems, conventional deep learning models with point estimation fail to account for the inherent uncertainty in the predictions. This limitation poses challenges for providing reliable and trustworthy decision support for critical operations. To overcome this challenge, this study proposes a novel intelligent monitoring approach that integrates uncertainty-aware deep neural networks. Firstly, a spatio-temporal state matrix-based signal preprocessing method is proposed to enhance feature extraction capabilities, enabling the effective integration of diverse multi-source data. Secondly, a probabilistic distribution is developed to generate predictive uncertainty for all network parameters, enabling the assessment of the confidence of the model’s outputs not only for known operation scenarios but also for unknown scenarios. Finally, the experiments are conducted using an established advanced nuclear energy research platform and a public nuclear accident simulation platform, ensuring the effectiveness and applicability of the proposed approach in practical settings. Overall, the proposed approach significantly enhances the reliability and trustworthiness of the monitoring outputs while mitigating the risks associated with the decision-making process in safety-critical energy systems.

Keywords: Safety-critical energy systems; Uncertainty-aware deep learning; Intelligent health monitoring; Trustworthy decision-making (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224001907
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:291:y:2024:i:c:s0360544224001907

DOI: 10.1016/j.energy.2024.130419

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544224001907