Power capture and power take-off load of a self-balanced dual-flap oscillating surge wave energy converter
Alaa Ahmed,
Jia Mi,
Jianuo Huang,
Raju Datla,
Kevin Connington,
Lei Zuo and
Muhammad R. Hajj
Energy, 2024, vol. 291, issue C
Abstract:
Wave energy converters are an important part of future renewable energy infrastructure. Predicting their power matrix, capture width ratio, and power take-off loads at a targeted site is required for performance assessment before deployment. Because their testing is very expensive, numerical modeling and simulations play a significant role in those assessments. Linear potential flow theory has limited accuracy under large amplitude wave forcing. More accurate predictions can be obtained by using higher-fidelity models, which are computationally expensive. We present a framework for multi-fidelity numerical simulations to determine the hydrodynamic response, wave capture capability, and power take-off load of a full-scale dual-flap oscillating surge wave energy converter. This design exploits out-of-phase motion by setting the distance between the flaps to half the wavelength of the most occurring wave. The simulations are validated using a 1:10 model experiments in a wave tank. Based on these validations, it was determined that Euler simulations provide an acceptable prediction with 90% reduction in computational time with only 11% error. Utilizing Euler simulations at full-scale, the results demonstrate that the annual electrical energy output is 1.79 GWh under regular wave conditions. One significant improvement over single-flap designs is the capture width ratio which exceeds unity.
Keywords: Wave energy; Wave tank tests; Multi-fidelity simulations; Power matrix; Capture width ratio; PTO loads (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224002020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:291:y:2024:i:c:s0360544224002020
DOI: 10.1016/j.energy.2024.130431
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().