Optimal energy management system for grid-connected hybrid power plant and battery integrated into multilevel configuration
Ehsan Hosseini,
Pablo Horrillo-Quintero,
David Carrasco-Gonzalez,
Pablo García-Triviño,
Raúl Sarrias-Mena,
Carlos A. García-Vázquez and
Luis M. Fernández-Ramírez
Energy, 2024, vol. 294, issue C
Abstract:
A novel optimal energy management system (EMS) using a nonlinear constrained multivariable function to optimize the operation of battery energy storages (BESs) used in a hybrid power plant with wind turbine (WT) and photovoltaic (PV) power plants is proposed in this work. The hybrid power plant uses a configuration based on a battery-stored impedance-based cascaded multilevel inverter to integrate renewable energy sources (PV power plants and WT) and BESs into the grid. The new optimal EMS seeks for satisfying the demanded power while dispatching power between BESs to optimize their efficiency. A grid-connected configuration is implemented to assess the efficiency of the suggested supervisory control under changes in renewable energy (changes in wind speed and irradiation), and in a varying active and reactive powers’ request. The BES efficiency obtained from the suggested EMS is set side by side to the BES efficiency got from a conventional EMS and a model predictive control (MPC), both working based on the state-of-charge (SOC) of the BES and balancing power EMS. The results from MATLAB simulation and the experimental results with the real-time OPAL-RT simulator (OP4510, OPAL-RT) and dSPACE MicroLabBox show the effectiveness of the suggested approach and the improvement in long-term BES efficiency.
Keywords: Energy storage system; Optimal energy management; Multi-level inverter; Wind turbine; Photovoltaic cells (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224005371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005371
DOI: 10.1016/j.energy.2024.130765
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().