Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation
Yi Liu,
Ranpeng Wang,
Yin Gu,
Congjian Li and
Gangqiao Wang
Energy, 2024, vol. 298, issue C
Abstract:
Accurate and reliable wind forecasts for urban blocks play a pivotal role in the construction of zero-energy communities by guiding the selection and placement of wind turbines and the aerodynamic design optimization of ducted openings. While relatively accurate wind fields are available based on numerical methods, their heavy computational cost and discontinuity make it necessary to explore an interactive and end-to-end method. In this study, we develop a physics-inspired and data-driven two-stage deep learning approach that can reconstruct complex wind fields precisely. The proposed method integrates a physical feature extraction model of the flow field with a sparse measurement data-driven error correction approach. In particular, a well-designed and well-trained flow field feature extraction model (original model) can preserve salient features of CFD modelling, while data-driven error correction techniques may harvest the uncertainty features and fill the remaining gaps between the original model predictions and the measured data. The proposed method is verified by a measured dataset from a community in Beijing. Experimental validation illustrates that the proposed algorithm successfully accomplishes wind field reconstruction in complex terrains using sparse datasets. We show that the proposed two-stage strategy exhibits significantly improved prediction results over the purely original method, with an average accuracy improvement of 47.17% and a maximum accuracy improvement of 72.59%. Overall, the proposed method delivers the potential in accurate wind field construction and urban wind energy forecasting.
Keywords: Wind field reconstruction; Deep learning; CFD database; Physics-inspired neural networks; Data-driven error correction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422401003X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s036054422401003x
DOI: 10.1016/j.energy.2024.131230
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().