Numerical simulation of ultrasonic P-wave propagation in water-bearing coal based on gas-liquid homogeneous wave velocity model
Shibin Wang,
Yueping Qin,
Gang Wang,
Xuechang Chen,
Lihui Chi and
Liu Yang
Energy, 2024, vol. 298, issue C
Abstract:
This paper establishes the equivalent density and equivalent P-wave velocity models of coal bodies with different water saturation, and investigates the P-wave propagation evolution law of coal bodies with different water saturation from the perspective of numerical simulation. When the experimental coal samples continue to use high-pressure water after reaching the natural saturation state, the water saturation can be further increased, and the increase in water saturation is larger, and the corresponding P-wave velocity also appears to be increased more substantially, and this phenomenon also occurs in numerical simulation results, which indicates that the P-wave velocity will have an obvious increasing trend when the coal body is from nearly saturated to fully saturated. The experimental and numerical simulation results show that the P-wave velocity of coal samples increases with the water saturation degree in a similar exponential function, which further verifies the reasonableness and feasibility of the modelling based on the assumption of gas-liquid homogeneous medium. In addition, the propagation of P-wave in coal samples is affected by the pore and fracture structure, and the pore and fracture with small pore size has less influence on the P-wave, and vice versa.
Keywords: Water-bearing coal; P-wave velocity; Numerical simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010405
DOI: 10.1016/j.energy.2024.131267
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().