EconPapers    
Economics at your fingertips  
 

A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network

Huifeng Xu, Feihu Hu, Xinhao Liang, Guoqing Zhao and Mohammad Abugunmi

Energy, 2024, vol. 299, issue C

Abstract: Electricity load exhibits daily and weekly cyclical patterns as well as random characteristics. At present, prevailing deep learning models cannot learn electricity load cyclical and stochastic features adequately. This results in insufficient prediction accuracy and the scalability of current methods. To tackle these difficulties, this paper proposes a framework for electrical load prediction based on an Attention Mechanism Time Series Depthwise Separable Convolutional Neural Network (ELPF-ATDSCN). The framework starts by using the Maximum Information Coefficient for exogenous variable selection. It then incorporates a seasonal decomposition algorithm with manual feature engineering to extract the cyclical and stochastic features of the electrical load. Subsequently, the framework employs the ATDSCN to learn the cyclical and stochastic features of the electrical load. In addition, the Bayesian algorithm optimizes model hyperparameters for optimal model performance. Experimental results of point and interval load prediction on datasets from the US and Nordic power markets reveal that the ATDSCN model proposed in this paper enhances load prediction accuracy compared with other models. It can provide more reliable predictions for power system operation and dispatch.

Keywords: Electricity load forecasting; Feature selection; Time series decomposition; Attention mechanism; Deep neural network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010314
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224010314

DOI: 10.1016/j.energy.2024.131258

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224010314