EconPapers    
Economics at your fingertips  
 

Energy-efficiency oriented occupancy space optimization in buildings: A data-driven approach based on multi-sensor fusion considering behavior-environment integration

Ying Zhou, Yu Wang, Chenshuang Li, Lieyun Ding and Zhigang Yang

Energy, 2024, vol. 299, issue C

Abstract: Buildings contribute significantly to global energy consumption. Optimizing internal building space layout is an essential approach for reducing energy consumption. However, proactively improving energy efficiency by building space design is still challenging requiring comprehensive consideration of complex interactions between indoor environment and occupant behavior, which is less studied previously. Considering behavior-environment integration, this study proposes a data-driven approach based on multi-sensor fusion for energy-efficiency oriented occupancy space optimization in buildings. Firstly, time series data including indoor environment and occupant behavior were collected based on multi-sensor fusion. Then, a data-integrated Convolutional Neural Network (CNN) model was developed for occupancy state classification. Based on obtained occupant schedules, space occupancy patterns of users were extracted using hierarchical clustering, and space optimization was further conducted for energy efficiency improvement. Finally, energy consumption was predicted with random forest regression after space optimization, and the impact of occupancy space optimization on energy efficiency can be evaluated. The proposed method was successfully applied in an academic office building on a campus in Wuhan, China, which helped achieve energy consumption reduction by 23.5 %. This study presents a promising path towards sustainable energy goals in building design, which serves as advanced guidance in the management of building energy performance.

Keywords: Occupancy space optimization; Energy efficiency; Data-driven simulation; Environment-behavior integration; Multi-sensor fusion; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224011691
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011691

DOI: 10.1016/j.energy.2024.131396

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-17
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011691