EconPapers    
Economics at your fingertips  
 

Numerical analysis of the landing and take-off cycle standard for supersonic engines based on pollutant emission characteristics

Honglin He, Xiaojun Yang, Chunyang Li and Jinfang Teng

Energy, 2024, vol. 299, issue C

Abstract: To meet the requirements of the update for the supersonic landing and take-off (LTO) cycle standard, a methodology for studying the LTO supersonic standard based on pollutant emission characteristics is proposed in this paper to analyze the thrust and time of the LTO. In this study, three distinct supersonic engine models were developed based on subsonic engine cores. Subsequently, the pollutant emission calculation models were developed to calculate the pollutant emission index (Ie) of supersonic engines and analyze the pollutant emission characteristics. Findings confirmed the presence of a correlation between standard formulations and pollutant emissions. Finally, considering that the current LTO standard leads to excessive noise during the climb phase and inefficient combustion during the taxi/ground idle phase, the LTO supersonic standard was analyzed for the trade-off, which resulted in the more applicable and fairer standard being formulated. The results indicate that the LTO supersonic standard formulated in this paper proves to be more reasonable than the current LTO standard and accurately represents the pollutant emission characteristics of distinct supersonic engines during both the climb and taxi/ground idle phases. Consequently, this study's results have guiding significance for formulating the future LTO supersonic standard and predicting pollutant emissions from supersonic engines.

Keywords: Aviation emissions; Combustion; Regulation standard; Air pollutants; Mathematical modeling; Supersonic engines (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224011976
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011976

DOI: 10.1016/j.energy.2024.131424

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011976