EconPapers    
Economics at your fingertips  
 

Passivity-based control of fluid flow networks with capacitance

Zhe Dong, Zhonghua Cheng, Yunlong Zhu, Zuoyi Zhang, Yujie Dong and Xiaojin Huang

Energy, 2024, vol. 299, issue C

Abstract: Fluid flow networks (FFNs) widely exist in industrial energy systems tightly related with the industrial production and residents living, such as district heating networks (DHN), mine-ventilation systems and gas transportation systems. The FFN operation is to drive the flowrates and pressures to their desired values, and the flowrate-pressure coordinated control of FFN is crucial in providing safe, stable and efficient operation. Although fluid capacitance has the same importance as fluid resistance and fluid inductance in giving dynamical characteristics of FFN, fluid capacitance is still not fully considered in the flowrate and pressure control design of FFN. In this paper, a nonlinear dynamic model of general FFN with fluid resistance, inductance and capacitance is first given. By using this nonlinear model, it is shown that the general FFN dynamics is strictly passive, and the corresponding generalized Hamiltonian form (GHF) is also given. Based on the passivity of FFN, a decentralized adaptive flowrate-pressure coordinated control is newly proposed, taking a simple proportional-integral (PI) form while providing globally asymptotic regulation for network flowrates and pressures. This FFN control method is applied to design the flowrate-pressure controller of an auxiliary startup circuit (ASC) equipped to a modular high temperature gas-cooled reactor (mHTGR), and simulation results in the cases of heating-up and cooling-down show the feasibility of control design.

Keywords: Fluid flow network (FFN); District heating; fluid capacitance; Passivity-based control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012015
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012015

DOI: 10.1016/j.energy.2024.131428

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012015