Enhancing thermal conductivity of sinterized bronze (Cu89/Sn11) by 3D printing and thermal post-treatment: Energy efficiency and environmental sustainability
Rubén Lostado-Lorza,
Marina Corral-Bobadilla,
Celia Sabando-Fraile and
Fátima Somovilla-Gómez
Energy, 2024, vol. 299, issue C
Abstract:
Enhancing the thermal conductivity of bronze is essential to enhance the efficiency of heat transfer and reduce energy consumption in systems such as heating, cooling, and heat exchangers systems. This study investigates the feasibility of producing sinterized bronze (Cu89/Sn11) using low-cost 3D printing Fused Deposition Modeling (FDM) technology and thermal post-treatment processes. The intention is to identify optimal printing parameters and sintering temperatures to maximize thermal conductivity, while focusing on minimizing energy consumption, raw material usage, and environmental impact. The thermal conductivity of twenty-seven samples was evaluated according to the ASTM E1530:2019 standard. A statistical analysis revealed significant effects of nozzle diameter and flow rate on thermal conductivity and density. The optimal results were obtained with a sintering temperature of 845 °C, a 1.0 mm nozzle diameter, and a 110 % flow rate. These conditions yield the highest thermal conductivity (87.61 W/m·K) and density (7.52 g/cm3). The lowest values were observed at a sintering temperature of 865 °C, a 0.6 mm nozzle diameter, and a 100 % flow rate. A Life Cycle Assessment (LCA) using the ReCiPe Endpoint (E) methodology was employed to compare the environmental impact of the resulting thermal conductivities. The results suggest that sintered bronze produced by FDM and thermal post-treatment provide superior performance and a smaller environmental impact than conventional methods. This study underscores the potential for more efficient and sustainable manufacturing practices in the production of sintered bronze.
Keywords: Thermal conductivity; Life cycle assessment; Fused deposition modeling (FDM); Sustainability in manufacturing; Environmental impact (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012088
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012088
DOI: 10.1016/j.energy.2024.131435
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().